Splines Namespace ReferenceΒΆ
Splines
|
Classes | |
class | Akima2Dspline |
class | AkimaSpline |
class | BesselSpline |
class | BiCubicSpline |
class | BiCubicSplineBase |
class | BilinearSpline |
bilinear spline base class More... | |
class | BiQuinticSpline |
cubic spline base class More... | |
class | BiQuinticSplineBase |
Bi-quintic spline base class. More... | |
class | ConstantSpline |
Picewise constants spline class. More... | |
class | CubicSpline |
class | CubicSplineBase |
class | HermiteSpline |
Hermite Spline Management Class. More... | |
class | LinearSpline |
Linear spline class. More... | |
class | PchipSpline |
Pchip (Piecewise Cubic Hermite Interpolating Polynomial) spline class. More... | |
class | QuinticSpline |
Quintic spline class. More... | |
class | QuinticSplineBase |
class | Spline |
class | Spline1D |
Spline Management Class. More... | |
class | Spline2D |
class | SplineSet |
Splines Management Class. More... | |
class | SplineSurf |
class | SplineVec |
Typedefs | |
typedef double | real_type |
Floating point type for splines. | |
typedef int | integer |
Signed integer type for splines. | |
using | SplineType1D |
Associate a number for each type of splines implemented. | |
using | SplineType2D |
Associate a number for each type of splines implemented. | |
Functions | |
void | Pchip_build (real_type const X[], real_type const Y[], real_type Yp[], integer npts) |
void | uniform (integer, integer npts, real_type const [], integer, real_type t[]) |
void | chordal (integer dim, integer npts, real_type const pnts[], integer ld_pnts, real_type t[]) |
void | centripetal (integer dim, integer npts, real_type const pnts[], integer ld_pnts, real_type alpha, real_type t[]) |
integer | check_cubic_spline_monotonicity (real_type const X[], real_type const Y[], real_type const Yp[], integer npts) |
Check if cubic spline with this data is monotone, return -1 no, 0 yes, 1 strictly monotone. | |
real_type | curvature (real_type s, Spline const &X, Spline const &Y) |
real_type | curvature_D (real_type s, Spline const &X, Spline const &Y) |
real_type | curvature_DD (real_type s, Spline const &X, Spline const &Y) |
void | universal (integer dim, integer npts, real_type const pnts[], integer ld_pnts, real_type t[]) |
void | FoleyNielsen (integer dim, integer npts, real_type const pnts[], integer ld_pnts, real_type t[]) |
void | FangHung (integer dim, integer npts, real_type const pnts[], integer ld_pnts, real_type t[]) |
Detailed Description
Namespace of Splines library
Typedef Documentation
◆ SplineType1D
using Splines::SplineType1D |
Associate a number for each type of splines implemented.
◆ SplineType2D
using Splines::SplineType2D |
Associate a number for each type of splines implemented.
Function Documentation
◆ centripetal()
void Splines::centripetal | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | alpha, | ||
real_type | t[] ) |
Compute nodes for the spline using centripetal distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [in] alpha power factor [out] t vector of the computed nodes
◆ chordal()
void Splines::chordal | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | t[] ) |
Compute nodes for the spline using chordal distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [out] t vector of the computed nodes
◆ curvature()
compute curvature of a planar curve
◆ curvature_D()
compute curvature derivative of a planar curve
◆ curvature_DD()
compute curvature second derivative of a planar curve
◆ FangHung()
void Splines::FangHung | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | t[] ) |
Compute nodes for the spline using FangHung
distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [out] t vector of the computed nodes
◆ FoleyNielsen()
void Splines::FoleyNielsen | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | t[] ) |
Compute nodes for the spline using FoleyNielsen
distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [out] t vector of the computed nodes
◆ Pchip_build()
void Splines::Pchip_build | ( | real_type const | X[], |
real_type const | Y[], | ||
real_type | Yp[], | ||
integer | npts ) |
References:
F.N. Fritsch, R.E. Carlson: Monotone Piecewise Cubic Interpolation, SIAM J. Numer. Anal. Vol 17, No. 2, April 1980
F.N. Fritsch and J. Butland: A method for constructing local monotone piecewise cubic interpolants, SIAM Journal on Scientific and Statistical Computing 5, 2 (June 1984), pp. 300-304.
◆ uniform()
void Splines::uniform | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | t[] ) |
Compute nodes for the spline using uniform distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [out] t vector of the computed nodes
◆ universal()
void Splines::universal | ( | integer | dim, |
integer | npts, | ||
real_type const | pnts[], | ||
integer | ld_pnts, | ||
real_type | t[] ) |
Compute nodes for the spline using universal distribution
- Parameters
-
[in] dim dimension of the points [in] npts number of points [in] pnts matrix whose columns are the points [in] ld_pnts leading dimension of the matrix (fortran storage) [out] t vector of the computed nodes
Generated by 1.12.0