Spline2D Class ReferenceΒΆ
Splines
|
#include <Splines2D.hxx>
Public Member Functions | |
void | clear () |
void | write_to_stream (ostream_type &s) const |
char const * | type_name () const |
string | info () const |
void | info (ostream_type &stream) const |
void | dump_data (ostream_type &stream) const |
Constructors | |
Spline2D (string const &name="Spline2D") | |
virtual | ~Spline2D () |
void | build (SplineType2D tp, real_type const x[], integer incx, real_type const y[], integer incy, real_type const z[], integer ldZ, integer nx, integer ny, bool fortran_storage=false, bool transposed=false) |
void | build (SplineType2D tp, vector< real_type > const &x, vector< real_type > const &y, vector< real_type > const &z, bool fortran_storage=false, bool transposed=false) |
void | build (SplineType2D tp, real_type const z[], integer ldZ, integer nx, integer ny, bool fortran_storage=false, bool transposed=false) |
void | build (SplineType2D tp, vector< real_type > const &z, integer nx, integer ny, bool fortran_storage=false, bool transposed=false) |
void | setup (GenericContainer const &gc) |
void | build (GenericContainer const &gc) |
Open/Close/Bound | |
bool | is_x_closed () const |
void | make_x_closed () |
void | make_x_opened () |
bool | is_y_closed () const |
void | make_y_closed () |
void | make_y_opened () |
bool | is_x_bounded () const |
void | make_x_unbounded () |
void | make_x_bounded () |
bool | is_y_bounded () const |
void | make_y_unbounded () |
void | make_y_bounded () |
Info | |
string const & | name () const |
integer | num_point_x () const |
integer | num_point_y () const |
real_type | x_node (integer i) const |
real_type | y_node (integer i) const |
real_type | z_node (integer i, integer j) const |
Get bounds | |
real_type | x_min () const |
real_type | x_max () const |
real_type | y_min () const |
real_type | y_max () const |
real_type | z_min () const |
real_type | z_max () const |
Evaluate | |
real_type | operator() (real_type x, real_type y) const |
real_type | eval (real_type x, real_type y) const |
First derivatives: | |
void | D (real_type x, real_type y, real_type d[3]) const |
real_type | Dx (real_type x, real_type y) const |
real_type | Dy (real_type x, real_type y) const |
real_type | eval_D_1 (real_type x, real_type y) const |
real_type | eval_D_2 (real_type x, real_type y) const |
Second derivatives: | |
void | DD (real_type x, real_type y, real_type dd[6]) const |
real_type | Dxx (real_type x, real_type y) const |
real_type | Dxy (real_type x, real_type y) const |
real_type | Dyy (real_type x, real_type y) const |
real_type | eval_D_1_1 (real_type x, real_type y) const |
real_type | eval_D_1_2 (real_type x, real_type y) const |
real_type | eval_D_2_2 (real_type x, real_type y) const |
Detailed Description
Bi-quintic spline base class
Constructor & Destructor Documentation
◆ Spline2D()
|
inline |
Build an empty spline of Spline2D
type
- Parameters
-
name the name of the spline
◆ ~Spline2D()
|
inlinevirtual |
Spline destructor.
Member Function Documentation
◆ build() [1/5]
|
inline |
Build a spline using data in GenericContainer
◆ build() [2/5]
|
inline |
Build surface spline
- Parameters
-
tp spline type x vector of x-coordinates incx access elements as x[0]
,x[incx]
,x[2*incx]
,...y vector of y-coordinates incy access elements as y[0]
,y[incx]
,y[2*incx]
,...z matrix of z-values. Elements are stored by row Z(i,j) = z[i*ny+j] as C-matrix ldZ leading dimension of z
nx number of points in x
directionny number of points in y
directionfortran_storage if true elements are stored by column i.e. Z(i,j) = z[i+j*nx] as Fortran-matrix transposed if true matrix Z is stored transposed
◆ build() [3/5]
|
inline |
Build surface spline
- Parameters
-
tp spline type z matrix of z-values. Elements are stored by row Z(i,j) = z[i*ny+j] as C-matrix ldZ leading dimension of the matrix. Elements are stored by row Z(i,j) = z[i*ldZ+j] as C-matrix nx x-dimension ny y-dimension fortran_storage if true elements are stored by column i.e. Z(i,j) = z[i+j*nx] as Fortran-matrix transposed if true matrix Z is stored transposed
◆ build() [4/5]
|
inline |
Build surface spline
- Parameters
-
tp spline type x vector of x-coordinates, nx = x.size() y vector of y-coordinates, ny = y.size() z matrix of z-values. Elements are stored by row Z(i,j) = z[i*ny+j] as C-matrix fortran_storage if true elements are stored by column i.e. Z(i,j) = z[i+j*nx] as Fortran-matrix transposed if true matrix Z is stored transposed
◆ build() [5/5]
|
inline |
Build surface spline
- Parameters
-
tp spline type z matrix of z-values. Elements are stored by row Z(i,j) = z[i*ny+j] as C-matrix. ldZ leading dimension of the matrix is ny for C-storage and nx for Fortran storage. nx x-dimension ny y-dimension fortran_storage if true elements are stored by column i.e. Z(i,j) = z[i+j*nx] as Fortran-matrix transposed if true matrix Z is stored transposed
◆ clear()
|
inline |
Cancel the support points, empty the spline.
◆ D()
Value and first derivatives at point \( (x,y) \):
- d[0] value of the spline \( S(x,y) \)
- d[1] derivative respect to \( x \) of the spline: \( S_x(x,y) \)
- d[2] derivative respect to \( y \) of the spline: \( S_y(x,y) \)
◆ DD()
Value, first and second derivatives at point \( (x,y) \):
- dd[0] value of the spline \( S(x,y) \)
- dd[1] derivative respect to \( x \) of the spline: \( S_x(x,y) \)
- dd[2] derivative respect to \( y \) of the spline: \( S_y(x,y) \)
- dd[3] second derivative respect to \( x \) of the spline: \( S_{xx}(x,y) \)
- dd[4] mixed second derivative: \( S_{xy}(x,y) \)
- dd[5] second derivative respect to \( y \) of the spline: \( S_{yy}(x,y) \)
◆ dump_data()
|
inline |
Dump spline values on the streams
◆ Dx()
First derivatives respect to \( x \) at point \( (x,y) \) of the spline: \( S_x(x,y) \).
◆ Dxx()
Second derivatives respect to \( x \) at point \( (x,y) \) of the spline: \( S_{xx}(x,y) \).
◆ Dxy()
Mixed second derivatives: \( S_{xy}(x,y) \).
◆ Dy()
First derivatives respect to \( y \) at point \( (x,y) \) of the spline: \( S_x(x,y) \).
◆ Dyy()
Second derivatives respect to \( y \) at point \( (x,y) \) of the spline: \( S_{xx}(x,y) \).
◆ eval()
Evaluate spline value at (x,y)
.
◆ eval_D_1()
First derivatives respect to \( x \) at point \( (x,y) \) of the spline: \( S_x(x,y) \).
◆ eval_D_1_1()
Second derivatives respect to \( x \) at point \( (x,y) \) of the spline: \( S_{xx}(x,y) \).
◆ eval_D_1_2()
Mixed second derivatives: \( S_{xy}(x,y) \).
◆ eval_D_2()
First derivatives respect to \( y \) at point \( (x,y) \) of the spline: \( S_x(x,y) \).
◆ eval_D_2_2()
Second derivatives respect to \( y \) at point \( (x,y) \) of the spline: \( S_{xx}(x,y) \).
◆ info() [1/2]
|
inline |
String information of the kind and order of the spline
◆ info() [2/2]
|
inline |
Print information of the kind and order of the spline
◆ is_x_bounded()
|
inline |
Return true
if the parameter x
assumed bounded. If false the spline is estrapolated for x
values outside the range.
◆ is_x_closed()
|
inline |
Return true
if the surface is assumed closed in the x
direction
◆ is_y_bounded()
|
inline |
Return true
if the parameter y
assumed bounded. If false the spline is estrapolated for y
values outside the range.
◆ is_y_closed()
|
inline |
Return true
if the surface is assumed closed in the y
direction.
◆ make_x_bounded()
|
inline |
Make the spline surface bounded in the x
direction.
◆ make_x_closed()
|
inline |
Setup the surface as closed in the x
direction.
◆ make_x_opened()
|
inline |
Setup the surface as open in the x
direction.
◆ make_x_unbounded()
|
inline |
Make the spline surface unbounded in the x
direction.
◆ make_y_bounded()
|
inline |
Make the spline surface bounded in the y
direction
◆ make_y_closed()
|
inline |
Setup the surface as closed in the y
direction.
◆ make_y_opened()
|
inline |
Setup the surface as open in the y
direction.
◆ make_y_unbounded()
|
inline |
Make the spline surface unbounded in the y
direction
◆ name()
|
inline |
- Returns
- string with the name of the spline
◆ num_point_x()
|
inline |
Return the number of support points of the spline along x direction.
◆ num_point_y()
|
inline |
Return the number of support points of the spline along y direction.
◆ operator()()
Evaluate spline value at (x,y)
.
◆ setup()
void Splines::Spline2D::setup | ( | GenericContainer const & | gc | ) |
Build spline surface using gc
- gc("spline_type")
- "bilinear" build a bilinear spline surface
- "bicubic" build a spline surface with cubic spline
- "biquintic" build a spline surface with quintic spline
- "Akima" or "akima "build a spline surface with cubic spline using Akima algorithm to avoid obscillation
◆ type_name()
|
inline |
Return spline typename
◆ write_to_stream()
|
inline |
Print spline coefficients.
◆ x_max()
|
inline |
Return x-maximum spline value.
◆ x_min()
|
inline |
Return x-minumum spline value.
◆ x_node()
Return the i-th node of the spline (x component).
◆ y_max()
|
inline |
Return y-maximum spline value
◆ y_min()
|
inline |
Return y-minumum spline value.
◆ y_node()
Return the i-th node of the spline (y component).
◆ z_max()
|
inline |
Return z-maximum spline value
◆ z_min()
|
inline |
Return z-minumum spline value
◆ z_node()
Return the i-th node of the spline (y component).
The documentation for this class was generated from the following files:
- /Users/enrico/Ricerca/develop/PINS/pins-mechatronix/LibSources/submodules/Splines/src/Splines/Splines2D.hxx
- /Users/enrico/Ricerca/develop/PINS/pins-mechatronix/LibSources/submodules/Splines/src/Splines2D.cc
Generated by 1.12.0