![]() |
Quartic roots
Utilities for C++ programming
|
Classes | |
| class | Cubic |
| class | Quadratic |
| class | Quartic |
Typedefs | |
| using | real_type = double |
| real type numbers | |
| using | integer = int |
| integer type numbers | |
| using | complex_type = std::complex<real_type> |
| complex type numbers | |
| using | ostream_type = std::basic_ostream<char> |
| outoput stream type | |
| using | istream_type = std::basic_istream<char> |
| input stream type | |
Functions | |
| int | roots (real_type const *op, integer Degree, real_type *zeror, real_type *zeroi) |
Namespace containing all the functions and classes for the computation of polynomial roots
Implementation of Flocke algorithm for roots of 3rd and 4th degree polynomials.
There are 3 classed for 2nd, 3rd and 4th degree polynomial. An experimental translation to C++ of a C implementation of Jenkins–Traub algorithm is available.
References
| typedef std::complex< real_type > PolynomialRoots::complex_type = std::complex<real_type> |
complex type numbers
| using PolynomialRoots::integer = int |
integer type numbers
| typedef std::basic_istream< char > PolynomialRoots::istream_type = std::basic_istream<char> |
input stream type
| typedef std::basic_ostream< char > PolynomialRoots::ostream_type = std::basic_ostream<char> |
outoput stream type
| using PolynomialRoots::real_type = double |
real type numbers
| int PolynomialRoots::roots | ( | real_type const * | op, |
| integer | Degree, | ||
| real_type * | zeror, | ||
| real_type * | zeroi ) |
Find roots of a generic polynomial using Jenkins-Traub method
| [in] | op | the coefficients of the polynomial |
| [in] | Degree | degree of the polynomial |
| [out] | zeror | real part of the roots |
| [out] | zeroi | imaginary part of the roots |