BaseHermite Class ReferenceΒΆ
Splines
|
Public Member Functions | |
function | BaseHermite () |
function | base (in ignoredArg, in varargin) |
function | base_D (in ignoredArg, in varargin) |
function | base_DD (in ignoredArg, in varargin) |
function | base_DDD (in ignoredArg, in varargin) |
function | eval (in ignoredArg, in varargin) |
function | eval_D (in ignoredArg, in varargin) |
function | eval_DD (in ignoredArg, in varargin) |
function | eval_DDD (in ignoredArg, in varargin) |
function | base5 (in ignoredArg, in varargin) |
function | base5_D (in ignoredArg, in varargin) |
function | base5_DD (in ignoredArg, in varargin) |
function | base5_DDD (in ignoredArg, in varargin) |
function | base5_DDDD (in ignoredArg, in varargin) |
function | base5_DDDDD (in ignoredArg, in varargin) |
function | eval5 (in ignoredArg, in varargin) |
function | eval5_D (in ignoredArg, in varargin) |
function | eval5_DD (in ignoredArg, in varargin) |
function | eval5_DDD (in ignoredArg, in varargin) |
function | eval5_DDDD (in ignoredArg, in varargin) |
function | eval5_DDDDD (in ignoredArg, in varargin) |
function | hermite_to_bezier (in ignoredArg, in p0, in p1, in t0, in t1) |
function | bezier_to_hermite (in ignoredArg, in p0, in p1, in p2, in p3) |
function | L2_first_derivative (in ignoredArg) |
function | L2_second_derivative (in ignoredArg) |
function | L2_third_derivative (in ignoredArg) |
function | approximate_length (in ignoredArg, in varargin) |
function | cut (in ignoredArg, in varargin) |
Constructor & Destructor Documentation
◆ BaseHermite()
function BaseHermite::BaseHermite | ( | ) |
Build a matlab object storing Hermite base evaluator
Member Function Documentation
◆ approximate_length()
function BaseHermite::approximate_length | ( | in | ignoredArg, |
in | varargin ) |
Approximate the length of the cubic polynomial \( \mathbf{p}(t) \) defined on Hermite data:
The length is approximated usin 100 linear segment.
◆ base()
function BaseHermite::base | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base (cubic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 4 whose columns are the values of the Hermite base.
\begin{eqnarray*} h_1(t) &=& x^2(3-2x) \\ h_0(t) &=& 1-h_1(t) \\ h_2(t) &=& x(x(x-2)+1) \\ h_3(t) &=& x^2(x-1) \end{eqnarray*}
basis can be returned in separated vectors
◆ base5()
function BaseHermite::base5 | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base that are 6 polynomials of degree 5 with the properties
\[ \begin{array}{cccccc} h_1(0) = 1 & h_1(1) = 0 & h'_1(0) = 1 & h'_1(1) = 0 & h''_1(1) = 1 & h''_1(1) = 0 \\ h_0(0) = 0 & h_0(1) = 1 & h'_0(0) = 0 & h'_0(1) = 0 & h''_0(1) = 0 & h''_0(1) = 0 \\ h_2(0) = 0 & h_2(1) = 0 & h'_2(0) = 1 & h'_2(1) = 0 & h''_2(1) = 0 & h''_2(1) = 0 \\ h_3(0) = 0 & h_3(1) = 0 & h'_3(0) = 0 & h'_3(1) = 1 & h''_3(1) = 0 & h''_3(1) = 0 \\ h_4(0) = 0 & h_4(1) = 0 & h'_4(0) = 0 & h'_4(1) = 0 & h''_4(1) = 1 & h''_4(1) = 0 \\ h_5(0) = 0 & h_5(1) = 0 & h'_5(0) = 0 & h'_5(1) = 0 & h''_5(1) = 0 & h''_5(1) = 1 \\ \end{array} \]
basis can be returned in separated vectors
◆ base5_D()
function BaseHermite::base5_D | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base derivatives (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base5_DD()
function BaseHermite::base5_DD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base second derivatives (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base5_DDD()
function BaseHermite::base5_DDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base third derivatives (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base5_DDDD()
function BaseHermite::base5_DDDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base 4th derivatives (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base5_DDDDD()
function BaseHermite::base5_DDDDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base 5th derivatives (quintic degree) at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 6 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base_D()
function BaseHermite::base_D | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base derivative at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 4 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base_DD()
function BaseHermite::base_DD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base second derivative at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 4 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ base_DDD()
function BaseHermite::base_DDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate an Hermite base third derivative at point(s) t for the interval \( [0,1] \) (or \( [0,H] \) if second argument is present).
BASE is a matrix length(t) x 4 whose columns are the values of the Hermite base.
basis can be returned in separated vectors
◆ bezier_to_hermite()
function BaseHermite::bezier_to_hermite | ( | in | ignoredArg, |
in | p0, | ||
in | p1, | ||
in | p2, | ||
in | p3 ) |
Given the cubic polynomial defined with Bezier polygon return the Hermite data for the same polynomial
◆ cut()
function BaseHermite::cut | ( | in | ignoredArg, |
in | varargin ) |
Cut the cubic polynomial \( \mathbf{p}(t) \) defined on Hermite data on the interval [a,b] and return the new Hermite data
The parametrization of the new Hermite data is on [0,1]
◆ eval()
function BaseHermite::eval | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the cubic polynomial defined on Hermite data:
\begin{eqnarray*} \mathbf{p}(t) &=& h_0(t)\mathbf{p}_0+ h_1(t)\mathbf{p}_1+ h_2(t)\mathbf{t}_0+ h_3(t)\mathbf{t}_1 \\ \mathbf{p}(t,H) &=& h_0(t/H)\mathbf{p}_0+ h_1(t/H)\mathbf{p}_1+ H (h_2(t/H)\mathbf{t}_0+ h_3(t/H)\mathbf{t}_1) \end{eqnarray*}
◆ eval5()
function BaseHermite::eval5 | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the quintic polynomial defined on Hermite data:
\begin{eqnarray*} \mathbf{p}(t) &=& h_0(t)\mathbf{p}_0+ h_1(t)\mathbf{p}_1+ h_2(t)\mathbf{t}_0+ h_3(t)\mathbf{t}_1+ h_4(t)\mathbf{j}_0+ h_5(t)\mathbf{j}_1 \\ \mathbf{p}(t,H) &=& h_0(t/H)\mathbf{p}_0+ h_1(t/H)\mathbf{p}_1+ H (h_2(t/H)\mathbf{t}_0+ h_3(t/H)\mathbf{t}_1)+ H^2 (h_4(t/H)\mathbf{t}_0+ h_5(t/H)\mathbf{j}_1) \end{eqnarray*}
◆ eval5_D()
function BaseHermite::eval5_D | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the derivative \( \mathbf{p}'(t) \) of the quintic polynomial defined on Hermite data:
◆ eval5_DD()
function BaseHermite::eval5_DD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the second derivative \( \mathbf{p}''(t) \) of the quintic polynomial defined on Hermite data:
◆ eval5_DDD()
function BaseHermite::eval5_DDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the third derivative \( \mathbf{p}'''(t) \) of the quintic polynomial defined on Hermite data:
◆ eval5_DDDD()
function BaseHermite::eval5_DDDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the 4th derivative \( \mathbf{p}''''(t) \) of the quintic polynomial defined on Hermite data:
◆ eval5_DDDDD()
function BaseHermite::eval5_DDDDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the 5th derivative \( \mathbf{p}'''''(t) \) of the quintic polynomial defined on Hermite data:
◆ eval_D()
function BaseHermite::eval_D | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the derivative \( \mathbf{p}'(t) \) of the cubic polynomial defined on Hermite data:
◆ eval_DD()
function BaseHermite::eval_DD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the second derivative \( \mathbf{p}''(t) \) of the cubic polynomial defined on Hermite data:
◆ eval_DDD()
function BaseHermite::eval_DDD | ( | in | ignoredArg, |
in | varargin ) |
Evaluate the third derivative \( \mathbf{p}'''(t) \) of the cubic polynomial defined on Hermite data:
◆ hermite_to_bezier()
function BaseHermite::hermite_to_bezier | ( | in | ignoredArg, |
in | p0, | ||
in | p1, | ||
in | t0, | ||
in | t1 ) |
Given the cubic polynomial defined on Hermite data:
\begin{eqnarray*} \mathbf{p}(t) = h_0(t)\mathbf{p}_0 + h_1(t)\mathbf{p}_1 + h_2(t)\mathbf{t}_0 + h_3(t)\mathbf{t}_1 \end{eqnarray*}
return the Bezier polynomial of the same cubic
The documentation for this class was generated from the following file:
- /Users/enrico/Ricerca/develop/PINS/pins-mechatronix/LibSources/submodules/Splines/toolbox/lib/BaseHermite.m
Generated by 1.12.0